

Seguence

[1]

[2]

Question 1

Here are the first four terms of a sequence.

(a) Find the next term.

-1

(b) Find the *n*th term.

$$n^{th} = 23 + (n-1)(-6)$$

= 23 - 6n + 6 = 29 - 6n

Question 2

7, 5, 3, 1,
$$-1$$
, ...

(a) Find the next term in this sequence. [1]

-3

(b) Find the *n*th term of the sequence.

$$n^{+h} = 7 + (n-1)^{-2}$$

$$= 7 - 2n + 2 = 9 - 2n$$

Question 3

Find the *n*th term of each sequence.

(a) 4, 8, 12, 16, 20,

$$n^{th} = 4 + (n-1) + 4$$

 $= 4n$

$$a+b+c(b)$$
 11 20, 35, 56, 83, 20 $a+b+c=11$ 30+b 46 +6 30+b = 9 $c=8$ [2]

Find the *n*th term of this sequence.

$$2a = 4$$
 $3a+b=6$ $a+b+c=5$
 $a = 2$ $6+b=6$ $2+c=5$ The Maths Society
 $b=0$ $c=3$ The Maths Society

These are the first five terms of a sequence.

 $n^{\text{th}} = 18 + (n-1)(-5)$ = 13-5n+5 = 18-5n

Question 6

These are the first 5 terms of a sequence.

Find

(a) the 6th term,

-3

(b) the *n*th term, $n^{4h} = 32 + (n-1)(-7)$ = 32 - 7n + 7 = 39 - 7n

(c) which term is equal to -332.

39 - 7n = -332 -7n = -371 h = 63

Question 7

The first five terms of a sequence are shown below.

13 9 5 1 -

Find the *n*th term of this sequence.

 $n^{th} = 13 + (n-1) - 4$ = 13 - 4n + 4 = 17 - 4n

Question 8

A sequence is given by $u_1 = \sqrt{1}$, $u_2 = \sqrt{3}$, $u_3 = \sqrt{5}$, $u_4 = \sqrt{7}$, ...

(a) Find a formula for u_n , the *n*th term.

$$1 + (n-1)(2)$$

 $1 + 2n-2 = 2n-1$
 $n^{th} = \sqrt{2n-1}$

(b) Find u₂₉.

U29= 157

The Maths Society

[2]

[2]

[2]

[2]

For each of the following sequences, write down the next term.

21

(b)
$$x$$
, $6x$, $30x$, $120x$, ... [1]

(c) 2, 6, 18, 54, 162, ...

486

Question 11

For the sequence $5\frac{1}{2}$, 7, $8\frac{1}{2}$, 10, $11\frac{1}{2}$, ...

(a) find an expression for the *n*th term,

n^{4h} = 5.5 + (n-1) 1.5 = 5.5 + 1.5n - 1.5 = 4+1.5n

(b) work out the 100th term.

100th = 4+150 = 154

Question 12

Write down the next term in each of the following sequences.

(b) 1,
$$3$$
, 6 , 10 , 15 , ... [1]

[2]

[1]

8, 15, 22, 29, 36,

A sequence of numbers is shown above.

(a) Find the 10th term of the sequence.

[1]

71

(b) Find the *n*th term of the sequence.

[1]

(c) Which term of the sequence is equal to 260?

[1]

Question 15

4, 9, 16, 25, 36, ...

The first five terms of a sequence are 4, 9, 16, 25, 36, ... Find

(a) the 10th term,

[1]

121

(b) the *n*th term.

[1]

$$n^{th} = (n+1)^2$$

Find the nth term of each sequence.

(a) 7, 13, 19, 25, 31, ...

$$7+(n-1)6 = 7+6n-6$$

 $= 6n+1$
(b) 9, 16, 25, 36, 49, ...

Question 2

Find the *n*th term of each of these sequences.

(a)
$$16, 19, 22, 25, 28, ...$$
 [2] $16 + (n-1)3 = 16 + 3n - 3 = 13 + 3n$ (b) $1, 3, 9, 27, 81, ...$ [2]

Question 3

The *n*th term of a sequence is $an^2 + bn$.

(a) Write down an expression, in terms of a and b, for the 3rd term.

(b) The 3rd term of this sequence is 21 and the 6th term is 96.

Find the value of a and the value of b. You must show all your working.

$$9a + 3b = 21 \times 2$$

 $36a + 6b = 96$
 $-18a + 6b = 42$
 $18a = 54$
 $a = 3$

$$27+3b=21$$

 $3b=-6$
 $b=-2$

The Maths Society

[1]

[4]

Find the *n*th term in each of the following sequences.

(a)
$$\frac{1}{3}$$
, $\frac{2}{4}$, $\frac{3}{5}$, $\frac{4}{6}$, $\frac{5}{7}$, [1]

Question 7

Pattern 1

Pattern 2

Pattern 3

[1]

[1]

[1]

[1]

The first three patterns in a sequence are shown above.

(a) Complete the table.

Pattern number	1	2	3	4
Number of dots	5	8	10	14
		3	3	J

(b) Find a formula for the number of dots, d, in the nth pattern.

$$n^{th} = 5 + (n-1)3$$

= $5 + 3n - 3 = 3n + 2$

(c) Find the number of dots in the 60th pattern.

(d) Find the number of the pattern that has 89 dots.

(a) Complete the table for the four sequences A, B, C and D.

		Sequ	ence			Next term	nth term	
A	2	5	8	11	14		3n-J	
В	20 -	6 ₁₄ -	6 ₈ -	-6 2	-4		26-6n	
С	1	4	9	16	4 25		n ²	
D	0	2	6	12	20		n²-n	[10]
		2 + Cl 2 + 3		3) = 3	n-I	20 + (n-1) - 6 20 - 6n + 6 26 - 6n		

- (b) The sum of the first *n* terms of a sequence is $\frac{n(3n+1)}{2}$.
 - (i) When the sum of the first *n* terms is 155, show that $3n^2 + n 310 = 0$.

$$\frac{n(3n+1)}{2} = 155$$

$$3n^{2}+n = 310$$

$$3n^{2}+n-310=0$$

(ii) Solve
$$3n^2 + n - 310 = 0$$
. [3]
 $3n + 31 + 31$ $(3n + 31) (n - 10) = 0$

$$3n + 31 + 31$$
 (3n+31) (n-10) = 0
 $n = -\frac{31}{3}$ or n=10
(reject)

(iii) Complete the statement.

The sum of the first terms of this sequence is 155. [1]

The Maths Society

[2]

The first three diagrams in a sequence are shown below.

The diagrams are made by drawing lines of length 1 cm.

(a) The areas of each of the first three diagrams are shown in this table.

Diagram	1	2	3
Area (cm ²)	1	4	9

(i) Find the area of Diagram 4.

[1]

(ii) Find, in terms of
$$n$$
, the area of Diagram n .

[1]

(b) The numbers of 1 cm lines needed to draw each of the first three diagrams are shown in this table.

				1	
Diagram	1	2	3		
Number of 1 cmlines	4	13	26	43	
		9	13	13	

(i) Find the number of 1 cm lines needed to draw Diagram 4.

[1]

(ii) In which diagram are 118 lines of length 1 cm needed?

[1]

$$2a = 4$$
 $3a + b = 9$ $a + b + c = 4$
 $a = 2$ $6 + b = 9$ $c = -1$
 $b = 3$
 $2n^{2} + 3n - 1 = 118$
 $2n^{2} + 3n - 119 = 0$
 $(n-7)(2n+17) = 0$ The Maths Society
 $n=7$ or $4 = -\frac{17}{2}$
(reject)

(c) The **total** number of 1 cm lines needed to draw both Diagram 1 and Diagram 2 is 17. The **total** number of 1 cm lines needed to draw all of the first *n* diagrams is

$$\frac{2}{3}n^3 + an^2 + bn$$
.

Find the value of *a* and the value of *b*. Show all your working.

$$\frac{16}{3} + 40 + 2b = 17$$

$$16 + 120 + 6b = 51$$

$$120 + 6b = 35$$

$$\frac{2}{3} + a + b = 4$$

$$30 + 3b = 10 \times 2$$

$$-60 + 6b = 20$$

$$120 + 6b = 35$$

$$\frac{15}{2} + 3b = 10$$

$$3b = \frac{5}{2}$$
The tente table for each sequence.

Question 4 Complete the table for each sequence.

1st term	2nd term	3rd term	4th term	5th term	6th term	nth term
15	-7 ₈ /	_1	-9 -6	-13	-20	22-7n
<u>5</u> 18	<u>6</u> 19	$\frac{7}{20}$	<u>8</u> 21	9 22	10 28	n+4 n+17
2	3 -	5 10	17	26	36	n²+1
2	6	18	54	, 162	486	2×3 ⁿ⁻¹
	15 	$\frac{5}{18}$ $\frac{6}{19}$ $\frac{5}{5}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

The Maths Society

[6]

[11]

Complete the table for the following sequences. The first row has been completed for you.

		Sequ	ience		Next tw	vo terms	<i>n</i> th term	
	1	5	9	13	17	21	4n – 3	
(a)	12	21	30	39	48	57	3+9n	[3]
(b)	80 -	s ⁷⁴ -	68-	6 62	56	50	86-6n	[3]
(c)	1	8	27	64	125	216	n ³	[2]
(d)	2	10	30	68	130	222	n³+n	[2]

$$12 + (n-1)q = 80 + (n-1) - 6$$

$$12 + qn - q = 80 - 6n + 6$$
Society